반응형
1) crosstab
- To make frequency table
import pandas as pd df = pd.read_csv('iris.csv') pd.crosstab(df.loc[:10, 'Sepal.Width'], df.loc[:10, 'Petal.Width']) |

2) isna()
isna() is the same with isnull()
In reverse, notna() is the same with notnull()
3) fillna()
To handle nan value easily, fillna() is used.
Signature: df.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)
There are several methods.
First, using the specific value to specific category.
df = pd.read_csv('iris_missing.csv') df.head(10) |

SL_me = round(df['Sepal_Length'].mean(), 1) print('SL mean:', SL_me) v = {'Sepal_Length': SL_me} df = df.fillna(value=v) df.head(10) |

Second, just filling with one value to the all nan value
df = df.fillna(-1) df.head(10) |

#python #pandas #basic #nan #fillna #crosstap #frequnecy table
반응형
'02_python' 카테고리의 다른 글
Python pandas basic: iloc, loc, unique, apply (0) | 2023.05.03 |
---|